How to Calculate and Solve for Well Bore Storage Factor, Fluid Density and Well Annulus Cross-Sectional Area in Well Testing | The Calculator Encyclopedia

The image above represents the well bore storage factor.

To compute for the well bore storage factor, two essential parameters are needed and these parameters are Well Annulus Cross-Sectional Area (Ao) and Fluid Density (ρ).

The formula for calculating the well bore storage factor:

C = 144Ao / 5.615ρ

Where;

C = Well Bore Storage Factor
Ao = Well Annulus Cross-Sectional Area
ρ = Fluid Density

Let’s solve an example;
Find the well bore storage factor when the well annulus cross-sectional area is 54 and fluid density is 42.

This implies that;

Ao = Well Annulus Cross-Sectional Area = 54
ρ = Fluid Density = 42

C = 144Ao / 5.615ρ
C = 144 x 54 / 5.615 x 42
C = 7776/235.83 
C = 32.97

Therefore, the well bore storage factor is 32.97.

Calculating the Well Annulus Cross-Sectional Area when the Well bore Storage Factor and the Fluid Density is Given.

Ao = C x 5.615ρ / 144

Where;

Ao = Well Annulus Cross-Sectional Area
C = Well Bore Storage Factor
ρ = Fluid Density

Let’s solve an example;
Find the well annulus cross-sectional area when the well bore storage factor is 34 and fluid density is 24.

This implies that;

C = Well Bore Storage Factor = 34
ρ = Fluid Density = 24

Ao = C x 5.615ρ / 144
Ao = 34 x 5.615 x 24 / 144
Ao = 4581.84 / 144
Ao = 31.81

Therefore, the well annulus cross-sectional area is 31.81.

Continue reading How to Calculate and Solve for Well Bore Storage Factor, Fluid Density and Well Annulus Cross-Sectional Area in Well Testing | The Calculator Encyclopedia

The Calculator Encyclopedia Calculates the Hydraulic Mean Depth or Hydraulic Radius of Flow in Open Channels | Fluid Mechanics

Hydraulic mean depth or hydraulic radius can be defined as the cross-sectional area of flow divided by wetted perimeter.

Wetted perimeter is the perimeter of the cross sectional area that is “wet”.
Hydraulic mean depth or hydraulic radius is a very important parameter in flow in open channels and fluid mechanics calculations.

The formula for computing hydraulic mean depth or hydraulic radius is:

R = A / P

Where:
R = Hydraulic Depth
A = Cross-sectional Area of Flow
P =  Wetted Perimeter

For Example:

Find the hydraulic mean depth or hydraulic radius of flow in an open channel where the cross-sectional area is 150 m2 and the wetted perimeter is 100 m.

From the example we can see that the cross-sectional area is 150 m2 and the wetted perimeter is 100 m.

R = 150 / 100
R = 1.5

Therefore, the hydraulic mean depth or hydraulic radius is 1.5 m.

Now, I would love to show you how to use Nickzom Calculator The Calculator Encyclopedia to get answers for your questions on hydraulic mean depth or hydraulic radius.

Continue reading The Calculator Encyclopedia Calculates the Hydraulic Mean Depth or Hydraulic Radius of Flow in Open Channels | Fluid Mechanics

Nickzom Calculator Calculates the Hydraulic Depth of Flow in Open Channels | Fluid Mechanics

Hydraulic depth can be defined as the cross-sectional area of flow divided by the top width of surface.

Hydraulic depth is a very crucial parameter in calculations dealing with fluid mechanics and flow in open channels.

The formula for computing hydraulic depth is:

R = A / T

Where:
R = Hydraulic Depth
A = Cross-sectional Area of Flow
T =  Top Width or Top Surface Water Width

For Example:

Find the hydraulic depth of flow in an open channel where the cross-sectional area is 120 m2 and the top width is 12 m.

From the example we can see that the cross-sectional area is 120 m2 and the top width is 12 m.

R = 120 / 12
R = 10

Therefore, the hydraulic depth is 10 m.

Now, I would love to show you how to use Nickzom Calculator The Calculator Encyclopedia to get answers for your questions on hydraulic depth.

Continue reading Nickzom Calculator Calculates the Hydraulic Depth of Flow in Open Channels | Fluid Mechanics