How to Calculate and Solve for Sum of Forces Acting on Particle | Mineral Processing

The image above represents sum of forces acting on particle.

To compute for sum of forces acting on particle, two essential parameters are needed and these parameters are Mass of Particle (mp) and Acceleration (a).

The formula for calculating sum of forces acting on particle:

Σf = mp.a

Where:

Σf = Sum of Forces Acting on Particle
mp = Mass of Particle
a = Acceleration

Let’s solve an example;
Find the sum of forces acting on particle when the mass of particle is 12 and the acceleration is 4.

This implies that;

mp = Mass of Particle = 12
a = Acceleration = 4

Σf = mp.a
Σf = (12)(4)
Σf = 48

Therefore, the sum of forces acting on particle is 48 N.

Read more

How to Calculate and Solve for Reaction: Lift Moves Down | Motion

The image above represents reaction: lift moves down.

To compute for reaction: lift moves down, three essential parameters are needed and these parameters are mass (m), acceleration (a) and acceleration due to gravity (g).

The formula for calculating reaction: lift moves down:

R = m(g – a)

Where;

R = Reaction
m = Mass
g = acceleration due to gravity
a = Acceleration

Let’s solve an example;
Find the reaction when the mass is 28, acceleration is 9 and acceleration due to gravity is 9.8.

This implies that;

m = Mass = 28
g = acceleration due to gravity = 9.8
a = Acceleration = 9

R = m(g – a)
R = 28(9.8 – 9)
R = 28(0.80)
R = 22.4

Therefore, the reaction is 22.4 N.

Calculating the Mass when the Reaction, the Acceleration and the Acceleration due to Gravity is Given.

m = R / g – a

Where;

m = Mass
R = Reaction
g = acceleration due to gravity
a = Acceleration

Let’s solve an example;
Find the mass when the reaction is 42, the acceleration is 8 and the acceleration due to gravity is 9.8

This implies that;

R = Reaction = 42
g = acceleration due to gravity = 9.8
a = Acceleration = 8

m = R / g – a
m = 42 / 9.8 + 8
m = 42 / 17.8
m = 2.359

Therefore, the mass is 2.359.

Read more

How to Calculate and Solve for Reaction: Lift Moves Up | Motion

The image above represents reaction: lift moves up.

To compute for reaction: lift moves up, three essential parameters are needed and these parameters are mass (m), acceleration (a) and acceleration due to gravity (g).

The formula for calculating reaction: lift moves up:

R = m(a + g)

Where;

R = Reaction
m = Mass
g = acceleration due to gravity
a = Acceleration

Let’s solve an example;
Find the reaction when the mass is 18, acceleration is 21 and acceleration due to gravity is 9.8.

This implies that;

m = Mass = 18
g = acceleration due to gravity = 21
a = Acceleration = 9.8

R = m(a + g)
R = 18(21 + 9.8)
R = 18(30.8)
R = 554.4

Therefore, the reaction is 554.4 N.

Calculating the Mass when the Reaction, the Acceleration and the Acceleration due to Gravity is Given.

m = R / a + g

Where;

m = Mass
R = Reaction
g = acceleration due to gravity
a = Acceleration

Let’s solve an example;
Find the mass when the reaction is 42, the acceleration is 21 and the acceleration due to gravity is 9.8

This implies that;

R = Reaction = 42
g = acceleration due to gravity = 9.8
a = Acceleration = 21

m = R / a + g
m = 42 / 21 + 9.8
m = 42 / 30.8
m = 1.36

Therefore, the mass is 1.36.

Read more

How to Calculate and Solve for Force | Motion

The image above represents force.

To compute for force, two essential parameters are needed and these parameters are mass (m) and acceleration (a).

The formula for calculating force:

F = ma

Where;

F = Force
m = Mass
a = Acceleration

Let’s solve an example;
Find the force when the mass is 12 and the acceleration is 26?

This implies that;

m = Mass = 12
a = Acceleration = 26

F = ma
F = 12 x 26
F = 312

Therefore, the force is 312 N.

Calculating for Mass when the Force and the Acceleration is Given.

m = F / a

Where;

m = Mass
F = Force
a = Acceleration

Let’s solve an example;
Find the mass when the force is 100 and the acceleration is 20.

This implies that;

F = Force = 100
a = Acceleration = 20

m = F / a
m = 100 / 20
m = 5

Therefore, the mass is 5.

Read more