How to Calculate and Solve for Schottky Defect | Ceramics

The image above represents schottky defect.

To compute for schottky defect, four essential parameters are needed and these parameters are N, Activation energy (Qs), Boltzmann’s Constant (K) and Temperature (T).

The formula for calculating schottky defect:

Ns = N exp (-Qs/2KT)

Where:

Qs = Activation Energy
K = Boltzmann’s Constant
T = Temperature

Let’s solve an example;
Find the schottky defect when the activation energy is 44, N is 22, boltzmann’s constant is 1.38064852E-23 and the temperature is 30.

This implies that;

N = 22
Qs = Activation Energy = 44
K = Boltzmann’s Constant = 1.38054852E-23
T = Temperature = 30

Ns = N exp (-Qs/2KT)
Ns = (22)exp(-(44)/2(1.38064852e-23)(30))
Ns = (22)exp((-44)/(8.283891119e-22))
Ns = (22)exp(-5.3115135583771414e+22)
Ns = (22)(0)
Ns = 0

Therefore, the schottky defect is 0.

Calculating the N when the Schottky Defect, the Activation Energy, the Boltzmann’s Constant and the Temperature is Given.

N = Ns / e (-Qs / 2KT)

Where;

Ns = Schottky Defect
Qs = Activation Energy
K = Boltzmann’s Constant
T = Temperature

Let’s solve an example;
Find the N when the schottky defect is 40, the activation energy is 24, the boltzmann’s constant is 1.38064852E-23 and the temperature is 10.

This implies that;

Ns = Schottky Defect = 40
Qs = Activation Energy = 24
K = Boltzmann’s Constant = 1.38064852E-23
T = Temperature = 10

N = Ns / e (-Qs / 2KT)
N = 40 / e (-24 / 2 x 1.38064852E-23 x 10)
N = 40 / e (-24 / 2.76129704E+23)
N = 40 / e (8.691567e-23)
N = 40 / 8.691567e+23
N = 4.602e-23

Therefore, the is 4.602e-23.

Continue reading How to Calculate and Solve for Schottky Defect | Ceramics