How to Calculate and Solve for Resistance of a Temperature Detector | Temperature Measuring Instruments

The image above represents resistance of a temperature detector.

To compute for resistance of a temperature detector, four essential parameters are needed and these parameters are Reference Resistance (Ro), Temperature Co-efficient of Resistivity (α), Temperature of Thermistor (T) and Ambient Temperature (To).

The formula for calculating resistance of a temperature detector:

R = Ro [1 + α(T – To)]

Where:

R = Resistance
Ro = Reference Resistance
α = Temperature Co-efficient of Resistivity
T = Temperature of Thermistor
To = Ambient Temperature

Let’s solve an example:
Find the resistance when the reference resistance is 11, the temperature co-efficient of resistivity is 13, the temperature of thermistor is 17 and the ambient temperature is 19.

This implies that;

Ro = Reference Resistance = 11
α = Temperature Co-efficient of Resistivity = 13
T = Temperature of Thermistor = 17
To = Ambient Temperature = 19

R = Ro [1 + α(T – To)]
R = 11 x [1 + 13 x (17 – 19)]
R = 11 x [1 + 13 x (-2)]
R = 11 x [1 + -26]
R = 11 x -25
R = – 275

Therefore, the resistance of temperature detector is – 275 Ω.

Continue reading How to Calculate and Solve for Resistance of a Temperature Detector | Temperature Measuring Instruments

How to Calculate and Solve for Relationship between Resistance and Thermistor Temperature | Temperature Measuring Instruments

The image above represents the relationship between resistance and thermistor temperature.

To compute for relationship between resistance and thermistor temperature, four essential parameters are needed and these parameters are Reference Resistance (Ro), Temperature Parameter (β), Temperature of Thermistor (T) and Ambient Temperature (To).

The formula for calculating relationship between resistance and thermistor temperature:

R = Ro eβ(1 / T – 1 / To)

Where:

R = Resistance
Ro = Reference Resistance
β = Temperature Parameter
T = Temperature of Thermistor
To = Ambient Temperature

Let’s solve an example;
Find the resistance when the reference resistance is 21, the temperature parameter is 10, the temperature of thermistor is 14 and the ambient temperature is 8.

This implies that’

Ro = Reference Resistance = 21
β = Temperature Parameter = 10
T = Temperature of Thermistor = 14
To = Ambient Temperature = 8

R = Ro eβ(1 / T – 1 / To)
R = 21 x e10 x (1 / 14 – 1 / 21)
R = 21 x e10 x (0.071 – 0.125)
R = 21 x e10 x -0.0535
R = 21 x e-0.535
R = 21 x 0.585
R = 12.29

Therefore, the relationship between resistance and thermistor temperature is 12.29 Ω.

Continue reading How to Calculate and Solve for Relationship between Resistance and Thermistor Temperature | Temperature Measuring Instruments