## How to Calculate and Solve for Shaft Power | Ball Mill Length

The image above represents shaft power | ball mill length.

To compute for shaft power | ball mill length, six essential parameters are needed and these parameters are Value of C, Volume Load Percentage (J), % Critical Speed (Vcr), Bulk Density (s.g), Mill Length (L) and Mill Internal Diameter (D).

The formula for calculating shaft power | ball mill length:

P = 7.33 x C X J X Vcr x (1 – 0.937) x [1 – 0.1/29 – 10Vcr] x s.g. x L x D2.3

Where:

P = Shaft Power | Ball Mill Length
Vcr = % Critical Speed
sg = Bulk Density
L = Mill Length
D = Mill Internal Diameter

Let’s solve an example;
Find the shaft power | ball mill length when the volume load percentage is 8, the %critical speed is 10, the bulk density is 3. the mill length is 14 and the mill internal diameter is 16.

This implies that;

J = Volume Load Percentage = 8
Vcr = % Critical Speed = 10
sg = Bulk Density = 3
L = Mill Length = 14
D = Mill Internal Diameter = 16

P = 7.33 x C X J X Vcr x (1 – 0.937) x [1 – 0.1/29 – 10Vcr] x s.g. x L x D2.3
P = 7.33 x 1 x 8 x 10 x (1 – 0.937) x [1 – 0.1/29 – 10(10)] x 3 x 14 x 162.3
P = 36.94 x [1 – 0.1/2-91] x 3 x 14 x 588.133
P = 36.94 x [1 – 0.1/4.038e-28] x 24701.609
P = 36.94 x [1 – 2.47e+26] x 24701.609
P = 36.94 x -2.475e+26 x 24701.609
P = -2.259

Therefore, the shaft power | ball mill length is – 2.259 W.

## How to Calculate and Solve for Theoretical Density of Ceramics | Ceramics

The image above represents theoretical density of ceramics.

To compute for theoretical density of ceramics, five essential parameters are needed and these parameters are Number of formula units in unit cell (n’), Sum of atomic weights of atoms (ΣAc), Sum of atomic weights of anions (ΣAA), Unit cell volume (Vcand Avogadro’s number (NA).

The formula for calculating theoretical density of ceramics:

ρ = n'(ΣAc + ΣAA) / VcNA

Where:

ρ = Theoretical Density of Ceramics
n’ = Number of Formula Units in Unit Cell
ΣAc = Sum of Atomic Weights of Atoms
ΣAA = Sum of Atomic Weights of Anions
Vc = Unit Cell Volume

Let’s solve an example;
Find the theoretical density of ceramics when the number of formula units in unit cell is 12, the sum of atomic weights of atoms is 8, the sum of atomic weights of anions is 10, the unit cell volume is 9 and the avogadro’s number is 6.02214e+23.

This implies that;

n’ = Number of Formula Units in Unit Cell = 12
ΣAc = Sum of Atomic Weights of Atoms = 8
ΣAA = Sum of Atomic Weights of Anions = 10
Vc = Unit Cell Volume = 9
NA = Avogadro’s Number = 6.02214e+23

ρ = n'(ΣAc + ΣAA) / VcNA
ρ = (12)(8 + 10) / (9)(6.02214e+23)
ρ = (12)(18) / (5.4199e+24)
ρ = (216)/(5.4199e+24)
ρ = 3.98e-23

Therefore, the theoretical density of ceramics is 3.98e-23.