How to Calculate and Solve for Magnetic Flux Density or Field Induction | The Calculator Encyclopedia

The image above represents the magnetic flux density/field induction.

To compute the magnetic force of a field, four essential parameters are needed and the parameters are Magnetic Force (F), Quantity of Charge (q), Average Velocity of the Charge (v) and Angle between v and B (θ).

The formula for calculating the magnetic flux density/field induction:

B = F / qVsinθ

Where;
B = Magnetic Induction or Magnetic Flux Density
F = Magnetic Force
q = Quantity of Charge
v = Average Velocity of the charge
θ = Angle between v and B

Let’s solve an example;
Find the magnetic flux density/field induction of a field when Magnetic Force (F) is 17, Quantity of Charge (q) is 21, Average Velocity of the Charge (v) is 15 and Angle between v and B (θ) is 120°.

This implies that;
F = Magnetic Force = 17
q = Quantity of Charge = 21
v = Average Velocity of the charge = 15
θ = Angle between v and B = 120°

B = F / qVsinθ
B = 17 / (21 x 15)(sin 120°)
B = 17 / (315)(0.866)
B = 17 / (272.79)
B = 0.0623

Therefore, the magnetic flux density/field induction is 0.0623 Tesla.

Continue reading How to Calculate and Solve for Magnetic Flux Density or Field Induction | The Calculator Encyclopedia

How to Calculate and Solve for Magnetic Force | Nickzom Calculator

The image above represents magnetic force.

To compute the magnetic force of a field, four essential parameters are needed and the parameters are Quantity of Charge (q), Average Velocity of the Charge (v), Magnetic Field Induction or Magnetic Flux Density (B) and Angle between v and B (θ).

The formula for calculating the magnetic force:

F = qVBsinθ

Where;
F = Magnetic Force
q = Quantity of Charge
v = Average Velocity of the Charge
B = Magnetic Field Induction or Magnetic Flux Density
θ = Angle between v and B

Let’s solve an example;
Find the magnetic force of a field when the Quantity of Charge (q) is 11, Average Velocity of the Charge (v) is 20, Magnetic Field Induction or Magnetic Flux Density (B) is 17 and Angle between v and B (θ) is 28°.

This implies that;
q = Quantity of Charge = 11
v = Average Velocity of the Charge = 20
B = Magnetic Field Induction or Magnetic Flux Density = 17
θ = Angle between v and B = 28°

F = qVBsinθ
F = 11 x 20 x 17 x sin28°
F = 11 x 20 x 17 x 0.469
F = 1755.82

Therefore, the magnetic force is 1755.82 Newton (N).

Continue reading How to Calculate and Solve for Magnetic Force | Nickzom Calculator

The Calculator Encyclopedia Calculates and Solves the Wavelength for a Wave – Particle Behaviour

According to Wikipedia,

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be partly described in terms not only of particles, but also of waves.

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave’s shape repeats.

Nickzom Calculator requires two parameters to compute the wavelength of a wave or particle. These parameters are:

  • Mass
  • Velocity

The formula for computing the wavelength is:

λ = h / mv

Where:
λ = Wavelength
h = Planck’s Constant (6.63 x 10-34 js)
m = Mass
v = Velocity

Let’s solve an example, find the wavelength of a wave – particle with a mass of 300 Kg and a velocity of 3 x 1010 m/s.

From the example, we can see that:
m = 300
v = 3 x 1010

λ = 6.63 x 10-34 / 300 (3 x 1010)
λ = 6.63 x 10-34 / 9 x 1012
λ = 7.37 x 10-47

Therefore, the wavelength of the wave – particle (λ) is 7.37 x 10-47.

Continue reading The Calculator Encyclopedia Calculates and Solves the Wavelength for a Wave – Particle Behaviour

Nickzom Calculator Solves Drag Force in Particle Size Analysis for Soil Mechanics

In civil engineering, there are situations where matters of the soil is of utmost importance. Nickzom Calculator solves calculation problems in soil mechanics.

Under Soil Mechanics, there is Soil Test and Particle Size Analysis section.

Today, I would love to introduce you all to Drag Force under Particle Size Analysis.

One can access Nickzom Calculator+ (Professional Version) – The Calculator Encyclopedia via any of these channels:

Web – https://www.nickzom.org/calculator-plus

Android (Paid) – https://play.google.com/store/apps/details?id=org.nickzom.nickzomcalculator

Apple (Paid) – https://itunes.apple.com/us/app/nickzom-calculator/id1331162702?mt=8

Parameters to get solution for Drag Force in Particle Size Analysis

  • Viscosity
  • Radius of Sphere
  • Velocity

Nickzom Calculator+ (Professional Version) – The Calculator Encyclopedia solves this problems and shows the steps.

Now, click on Soil Mechanics

Then, click on Particle Size Analysis

Now Click on Drag Force

Enter the values of the parameters

Lastly, Click on Calculate

Immediately, the answer, formula and workings is displayed for your very own understanding.